
usb_serial: USB 1.1 / 2.0 serial data transfer core

Version: 2011-10-04

Author: Joris van Rantwijk

Language: VHDL

License: GPL – GNU General Public License

Website: http://jorisvr.nl/usb/

usb_serial is a synthesizable VHDL core, implementing serial data transfer over USB.
Combined with a UTMI-compatible USB transceiver chip, this core acts as a USB device that
transfers a byte stream in both directions over the bus.

This package is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

Features

● Very simple application interface in terms of byte-at-a-time FIFOs. Complications involving
the USB protocol (packets, endpoints, descriptors) are handled within the core. This is in
fact the whole point of this package.

● UTMI1-compatible transceiver interface.

● Supports USB 1.1 and USB 2.0; full-speed (12 Mbit/s) or high-speed (480 Mbit/s).

● Compatible with the standard Communication Device Class as a CDC-ACM device. This
implies that no special drivers are needed on the computer. Linux, Windows and Mac OS X
all have built-in support for CDC-ACM devices. (For Windows, a special .INF file is needed.)

● Tested on a Xilinx Spartan-3. Works out-of-the-box on a Trenz TE0146 micromodule.

Applications

● Drop-in replacement for RS-232 communication with a PC.
Many modern PCs lack a serial port. Use usb_serial plus an UTMI chip on your FPGA board
instead of an RS-232 UART. On the PC, the device will appear as a TTY or virtual COM port.
No need to modify PC software.

● Fast data exchange with a PC.
Enable high speed support in usb_serial and pump 30 MByte/s between your FPGA and PC.
Note that USB transfer rates are very dependent on the PC mainboard specs and CPU load.
Custom software will be needed on the PC; virtual COM port drivers are not made for such
high data rates.

Operation

At power on and after a reset pulse, the core attaches to the USB bus. If high speed support is
enabled, the core tries to negotiate high speed mode with the host. Otherwise, or in case high
speed negotiation fails, the core will operate in full speed mode. It responds to standard device
requests from the host to obtain an address and to publish its device descriptor.

The device descriptor indicates CDC-ACM compatibility. Product ID, Vendor ID and Product
Version can be configured at compile time. In addition, optional text strings may be specified
for manufacturer name, product name, and serial number.

1 UTMI = USB 2.0 Transceiver Macrocell Interface; a standard interface for USB transceivers.

usb_serial: USB 1.1 / 2.0 serial data transfer core – Page 1/6

http://jorisvr.nl/usb/

Figure 1: usb_serial core with external interface and sub-entities

Two bulk endpoints are used to transfer data; one for sending and the other for receiving. An
additional interrupt endpoint is implemented as required by the CDC-ACM specification, but
traffic on that endpoint is ignored.

Received data are held in a FIFO until they are accepted by the application. Likewise, the
application puts data in a transmit FIFO until they can be sent on the USB bus. The application
interacts with these FIFOs one byte at a time.

The core requires a 60 MHz system clock signal, synchronized to the UTMI interface signals.
This clock signal is normally generated by the UTMI transceiver.

Note: An external USB 2.0 transceiver chip is required between the core and the actual USB
lines. This transceiver must be compatible with the UTMI standard (USB 2.0 Transceiver
Macrocell Interface). It must use an 8-bit data interface at 60 MHz.

Application interface

The application receives data by reading from the RX FIFO. When the application is ready to
read data, it asserts the RXRDY signal. In response to RXRDY, if the FIFO is not empty, the core
asserts RXVAL and puts a data byte on RXDAT. Whenever both RXRDY and RXVAL are high on a
rising clock edge, the core assumes that a byte has been consumed and moves on to the
following byte. If the application does not want to read more data, it should deassert RXRDY
before the following rising clock edge.

The application sends data by putting it in the TX FIFO. As long as the FIFO is not full, the core
asserts TXRDY. When the application is ready to send data, it asserts TXVAL and puts a data
byte on TXDAT. Whenever both TXRDY and TXVAL are high on a rising clock edge, the core
accepts a byte from TXDAT and puts it in the FIFO. The application must either provide the next
data byte on TXDAT or deassert TXVAL before the following rising clock edge.

Figure 2: timing of RX FIFO interface (application accepts 3 bytes)

Configuration options

Generic Function Type Default

VENDORID Vendor ID reported in device descriptor. 16 bits

PRODUCTID Product ID reported in device descriptor. 16 bits

VERSIONBCD Product version reported in device descriptor. 16 bits

VENDORSTR Optional manufacurer name. string none

usb_serial: USB 1.1 / 2.0 serial data transfer core – Page 2/6

desc ROM
TX FIFO

usb_control

usb_transact

usb_init

UTMI

PHY
(UTMI)RX FIFO

USB

usb_serial

txval
txdat
txrdy

rxval
rxdat
rxrdy

usb_packet

CLK

RXRDY

RXVAL

RXDAT 00 01 02

PRODUCTSTR Optional product description. string none

SERIALSTR Optional serial number string. string none

HSSUPPORT Include support for high speed mode. boolean false

SELFPOWERED Enable self-powered bit in descriptor and status word. boolean false

RXBUFSIZE_BITS Size of receive FIFO, expressed as the base-2 logarithm of
the number of bytes. Must be at least 10 (1024 bytes) if
high speed support is enabled.

7 - 12 11

TXBUFSIZE_BITS Size of transmit FIFO, expressed as the base-2 logarithm of
the number of bytes.

7 - 12 10

Signal descriptions

Signal name Type Function

CLK Input System clock, 60 MHz, acts on rising edge. Must be synchronized to
the UTMI interface.

RESET Input Synchronous reset, active high. Clears buffers and re-attaches to the
USB bus.

USBRST Output Pulsed high when a reset signal is detected on the USB bus.
Note: Do not wire this signal to RESET; this is not needed and would
lock the core in reset.

HIGHSPEED Output High when the device is in high speed mode (possibly suspended).

SUSPEND Output High while the device is suspended.
Note: This signal is not synchronized to CLK; it may be used to
combinatorially drive the UTMI SuspendM pin.

ONLINE Output High when the device is in Configured state.

RXVAL Output High if valid received data is available on RXDAT.

RXDAT Out 8 bits Received data byte.

RXRDY Input High if the application is ready to accept the next byte.

RXLEN Out unsigned Number of bytes currently available in the receive FIFO.

TXVAL Input High if the application is ready to send data.

TXDAT In 8 bits Data byte to send, must be valid if TXVAL is high.

TXRDY Output High if the core is ready to accept the next byte.

TXROOM Out unsigned Number of free byte positions in the transmit FIFO.

TXCORK Input Temporarily suppress transmissions on the USB bus. This may be
used to pre-fill the transmit buffer before starting transmission.

PHY_DATAIN In 8 bits UTMI DataOut (confusing signal name; this is output from the
transceiver and input to the core).

PHY_DATAOUT Out 8 bits UTMI DataIn (confusing signal name; this is output from the core and
input to the transceiver).

PHY_TXVALID Output UTMI Transmit Valid.

PHY_TXREADY Input UTMI Transmit Data Ready.

PHY_RXACTIVE Input UTMI Receive Active.

PHY_RXVALID Input UTMI Receive Data Valid.

PHY_RXERROR Input UTMI Receive Error.

PHY_LINESTATE In 2 bits UTMI Line State.

PHY_OPMODE Out 2 bits UTMI Operational Mode.

PHY_XCVRSELECT Output UTMI Transceiver Select: selects between HS and FS mode.

PHY_TERMSELECT Output UTMI Termination Select: selects between HS and FS termination.

PHY_RESET Output UTMI Reset.

Host software

Data transfer is done using two bulk endpoints. Data sent by the host to the device through
endpoint 1_OUT ends up in the receive FIFO. Data queued in the transmit FIFO are sent to the
host through endpoint 1_IN.

usb_serial: USB 1.1 / 2.0 serial data transfer core – Page 3/6

The device is accessible from software running on the host. This typically requires interaction
with the USB driver in the operating system. How this is done depends on the operating system
used.

Linux:
Linux 2.6 has a built-in class driver for CDC-ACM devices. This driver, called cdc-acm, works
with usb_serial. If the driver is installed, it should automatically detect the device when it is
plugged in. A device node /dev/ttyACMn will be created (look at the kernel messages for the
exact device name). This device node can be accessed by application software as if it were a
serial port.

Alternatively, the generic USB serial driver for Linux, called usbserial, can be used. The
device's Product ID and Vendor ID must be passed as parameters when loading the driver. The
device will be accessible as /dev/ttyUSBn.

Both drivers have problems with flow control: if the device sends more data than can be
processed by the host software, some data may be lost. This is especially relevant to high
speed mode. At low data rates (a few kByte/s) the problem will not occur.

Alternatively, the host application can directly access the USB device through libusb 2. This
approach provides better performance than the serial drivers, especially in high speed mode.

Mac OS X:
On Mac OS X, the device is automatically recognized as a USB modem. It appears as device
node /dev/tty.usbmodemXXXX. This device can be used by application software as if it were a
serial port. Flow control does not work properly.

Windows:
The device works with usbser.sys (provided with Windows) and will show up as an extra COMn:
port. A custom .INF file is needed to tell Windows that it must use this driver. Have a look at
the sample file fpgaser.inf 3 to see how it can be done. Note that Product ID and Vendor ID in
the file must match those of the device. Helpful instructions can also be found in
Documentation/usb/gadget_serial.txt in the Linux kernel source tree.

The Windows 2000 version of usbser.sys is notoriously broken and should not be used.
Windows XP seems to do better. Flow control has not been tested and probably does not work
correctly.

Source code structure

The main VHDL entity of the core is usb_serial. It contains four sub-entities, as well as FIFOs,
descriptor ROM, buffer management logic and glue logic. The package consists of the following
VHDL files:

usb_serial.vhdl Main entity.

usb_init.vhdl Initialization, handshake and reset detection.

usb_packet.vhdl Packet handling.

usb_transact.vhdl Transaction handling.

usb_control.vhdl Default control endpoint.

usb_pkg.vhdl Package with entity declarations.

usbtest.vhdl Top-level entity consisting of usb_serial and a simple test application.

Synthesis

The VHDL code in this package is readily synthesizable for the Xilinx Spartan-3 family of FPGA
devices. The code should in principle be portable to other FPGA platforms. A tricky issue could
be the inference of Block RAM. The receive FIFO, transmit FIFO and descriptor ROM are coded

2 http://www.libusb.org/
3 contributed by Hans Hübner

usb_serial: USB 1.1 / 2.0 serial data transfer core – Page 4/6

in VHDL in such a way that the Xilinx synthesis tool automatically infers Block RAM primitives.
Some tweaking may be needed to get this to work with different synthesis software.

A Makefile is supplied which invokes the Xilinx tools to synthesize a test design for the Trenz
TE0146 XC3S1000 micromodule 4. With some changes, it should also work for different Xilinx
targets.

A constraint file will be needed to map I/O signals to specific pins and to specify timing
constraints. The file te0146.ucf contains constraints that are suitable for the Trenz TE0146
module. The use of IOB flip-flops is recommended. When the design is synthesized as a Xilinx
ISE Project, IOB flip-flops must be enabled explicitly (Map properties -> Pack registers into IOBs
-> Inputs and outputs).

Resource usage

Indication of resource requirements, based on synthesis of usb_serial as the top level design
for a Xilinx XC3S1000. (Xilinx Webpack 7.1i)

Configuration Full-speed only, 128 byte FIFOs High-speed support, 2k RX / 1k TX FIFO.

Nr of slice flip flops 235 285

Nr of 4-input LUTs 841 1062

Nr of occupied slices 479 (6%) 610 (7%)

Nr of Block RAMs 3 3

Total equivalent gate count 204,527 206,559

Testing

The top-level entity usbtest.vhdl may be used to test usb_serial. It implements a state
machine, responding to commands received from the host.

You can use minicom (on Linux) or hyperterminal (on Windows) to connect to the device and
play with it. The Python script testdev.py thoroughly tests various buffering and flow control
scenarios. The C program perftest.c uses libusb to test the bandwidth of data transfers.

For example, with a TE0146 module connected to a Linux host, you could do this:
1. Run make to build usbtest.bit (or use the precompiled usbtest_20091006_hs.bit).
2. Download the .bit file to the FPGA module.
3. Run lsusb to check that the device is recognized.

Also look at the kernel messages to check that CDC-ACM support is recognized. It should
say something about a new ttyACM0 device.

4. Use minicom to connect to /dev/ttyACM0.
Type "Hello" and press Enter. The device should answer "olleH".

5. Run python testdev.py /dev/ttyACM0 to start the torture test.
The test takes about 20 minutes to complete.

6. Run perftest -d fb9a:fb9a (as root) to start the performance test.

Performance

Tested under Linux 2.6.31 with libusb-1.0, using asynchronous requests.

Bus speed Measured IN bandwidth Measured OUT bandwidth

full speed 1,088,118 bytes/s 1,088,073 bytes/s

high speed 43,727,704 bytes/s 32,635,212 bytes/s

4 http://www.trenz-electronic.de/

usb_serial: USB 1.1 / 2.0 serial data transfer core – Page 5/6

Known limitations

● The TEST_MODE feature (mandatory for high speed devices) is not implemented. This
should not affect normal operation of the device, but the device would fail USB
conformance tests.

● The default control pipe does not strictly verify requests from the host. As a result, invalid
requests from the host may appear to succeed when they should have returned an error
code. This should not be an issue with a correctly working host controller, but it would
probably cause the device to fail USB conformance tests.

● In its configuration descriptor, the core claims to support AT-style commands. This is not
true, but it is needed to get the device recognized by the Linux CDC-ACM driver. In reality,
the core ignores the mandatory CDC requests SET_ENCAPSULATED_COMMAND and
GET_ENCAPSULATED_RESPONSE.

● In certain situations, the device may send more bytes than expected by the host. This is
flagged as a babble error by the host. This may occur, for example, when the host submits
an IN request which is not a multiple of the maximum packet size. To avoid this, always
submit IN requests with the transfer size set to a multiple of the maximum packet size.
Note that this is not a bug in the device core, rather an inconvenience in the USB software
stack.

● Depending on FPGA platform and board design, a bus powered device may not be able to
respond to the initial host requests after plugging in. For example, a Xilinx FPGA typically
needs more than 100 ms to initialize after power on. By this time the host will have tried to
communicate with the device. Most operating systems will successfully retry the
initialization procedure.

● The application interface of the core must be synchronized to the 60 MHz UTMI clock. This
is inconvenient when the core is embedded in a larger system with its own master clock. To
overcome this problem, separate clock domains should be created inside the core to
decouple the application clock from the UTMI clock.

● There are several bugs in the Windows 2000 version of usbser.sys. It is known to freeze
the pipe when it receives an unexpected zero-length packet. This happens if the device
sends an exact multiple of the maximum packet size while the host attempted to read
exactly that same amount of data.

usb_serial: USB 1.1 / 2.0 serial data transfer core – Page 6/6

	usb_serial: USB 1.1 / 2.0 serial data transfer core
	Features
	Applications
	Operation
	Application interface
	Configuration options
	Signal descriptions
	Host software
	Source code structure
	Synthesis
	Resource usage
	Testing
	Performance
	Known limitations

